# INDIAN MARITIME UNIVERSITY 

(A Central University, Government of India)
End Semester Examinations- June-July 2019

## Semester - I

B.Tech (Marine Engineering)

## Engineering Mechanics - I (UG11T3105)

Date: 18-07-2019
Time: 3 Hrs
Pass Marks: 50

## PART A <br> Question - $\mathbf{1}$ is compulsory ( $10 \times 3=30$ Marks)

Q. 1
a) State and explain Parallelogram law of forces.
b) List the assumptions made for solving a truss.
c) State the principle of virtual work.
d) Derive the relationship between the mechanical advantage, velocity ratio and efficiency for lifting machine.
e) Explain Pappus - Guldinus theorems.
f) What is moment of inertia and radius of gyration?
g) State and explain parallel axis theorem for moment inertia.
h) State D 'Alembert's principle.
i) What is a projectile? Give an example of projectile.
j) Calculate the angular acceleration of the flywheel which starts from rest, and gets up a speed of 180 rpm in 3 minutes.

PART B
(Answer any five questions from question no. 2 to 8)
$(5 \times 14=70)$
Q.2) Two smooth cylinders are placed in a channel as shown in figure. Their respective diameters are indicated in the figure. The weight of the smaller cylinder is W and that of the larger cylinder is 3 W . Determine contact forces at points $A, B, C$ and $D$. Take $W=10 \mathrm{kN}$.
(14marks)

Q.3) Determine, by the method of sections, the axial force in each of the bars 1,2 and 3 of the plane truss shown in figure.

Q.4) a) Two beams $A B$ and $C D$ are arranged and supported as shown in figure. Using the principle of virtual work, determine the reaction at support E if a load of 1 kN acts at 0.75 m away from support A.

b) In a certain weight lifting machine, an effort of 15 N can lift a load of 300 N and effort of 20 N can lift a load of 500N. Find the law of machine. Find the effort required to lift a load of 880 N . What is the maximum mechanical advantage and maximum efficiency. Velocity ratio for the lifting machine is 50 .
(7marks)
Q.5) a) Find the centroid of the bent wire shown in figure. All dimensions are in cm .

b) Determine the centroid of the composite section shown in figure.
(7marks)

Q.6) Find the moment of inertia of the channel section about the centroidal axes.
(14marks)

Q.7) a) A ball is thrown upwards from the top of a building with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ and at angle of $30^{\circ}$ with the horizontal. The height of the building from the ground level is 25 m . Determine i) horizontal distance it will travel before striking the ground ii) Maximum height reached by the ball above the ground level.
(7marks)
b) A motorcycle and rider of total weight $\mathrm{W}=2225 \mathrm{~N}$ travel in a vertical plane with constant speed $v=72 \mathrm{kmph}$ along the circular curve $A B$ of radius $r=300 \mathrm{~m}$, as shown in figure Find the reaction R exerted on the motorcycle by the track as it passes the crest $C$ of the curve.

(7 marks)
Q.8) a) Determine the tension in the string and acceleration of the system shown in the figure if $m_{1}=2 \mathrm{~kg}, \mathrm{~m}_{2}=1 \mathrm{~kg}, \theta=30^{\circ}$ and $\mu=0.2$ for all contact surfaces. Assume the pulleys are mass less and friction less and string is inextensible.

b) A block of 10 kg mass slides down an inclined plane with a slope angle of $35^{\circ}$. It is stopped by a spring of stiffness $1 \mathrm{kN} / \mathrm{m}$. If the block slides down 5 m before hitting the spring then determine maximum compression of the spring. The coefficient of friction between the block and the inclined plane is 0.15 .


